空 挡 广 告 位 | 空 挡 广 告 位

Semantic Visual Localization

Note: We don't have the ability to review paper

Title: Semantic Visual Localization

Teams: Microsoft

Writers: Johannes Schönberger Marc Pollefeys Andreas Geiger Torsten Sattler

Publication date: April 2018

Abstract

Robust visual localization under a wide range of viewing conditions is a fundamental problem in computer vision. Handling the difficult cases of this problem is not only very challenging but also of high practical relevance, e.g., in the context of life-long localization for augmented reality or autonomous robots. In this paper, we propose a novel approach based on a joint 3D geometric and semantic understanding of the world, enabling it to succeed under conditions where previous approaches failed. Our method leverages a novel generative model for descriptor learning, trained on semantic scene completion as an auxiliary task. The resulting 3D descriptors are robust to missing observations by encoding high-level 3D geometric and semantic information. Experiments on several challenging large-scale localization datasets demonstrate reliable localization under extreme viewpoint, illumination, and geometry changes.

您可能还喜欢...

Paper