DeepXPalm: Tilt and Position Rendering using Palm-worn Haptic Display and CNN-based Tactile Pattern Recognition

Note: We don't have the ability to review paper

PubDate: May 2022

Teams: Skolkovo Institute of Science and Technology;The University of Electro-Communications

Writers: Miguel Altamirano Cabrera; Oleg Sautenkov; Jonathan Tirado; Aleksey Fedoseev; Pavel Kopanev; Hiroyuki Kajimoto; Dzmitry Tsetserukou

PDF: DeepXPalm: Tilt and Position Rendering using Palm-worn Haptic Display and CNN-based Tactile Pattern Recognition

Abstract

Telemanipulation of deformable objects requires high precision and dexterity from the users, which can be increased by kinesthetic and tactile feedback. However, the object shape can change dynamically, causing ambiguous perception of its alignment and hence errors in the robot positioning. Therefore, recognize the tilt angle and position patterns sensed over the gripper fingertip is a classification problem that has to be solved to present a clear tactile pattern to the user. This work presents a telemanipulation system for plastic pipettes consisting of a multi-contact haptic interface LinkGlide to deliver haptic feedback at the users’ palm and two tactile sensors array embedded in the 2-finger Robotiq gripper. We propose a novel approach based on Convolutional Neural Networks (CNN) to detect the tilt and position while grasping deformable objects. The CNN generates a mask based on recognized tilt and position data to render further multi-contact tactile stimuli provided to the user during the telemanipulation. The study has shown that using the CNN algorithm and the preset mask, tilt, and position recognition by users is increased from 9.67% using the direct data to 82.5%.

You may also like...

Paper