空 挡 广 告 位 | 空 挡 广 告 位

Electro-active metaobjective from metalenses-on-demand

Note: We don't have the ability to review paper

PubDate: Nov 2022

Teams: University of Stuttgart

Writers: Julian Karst, Yohan Lee, Moritz Floess, Monika Ubl, Sabine Ludwigs, Mario Hentschel & Harald Giessen

PDF: Electro-active metaobjective from metalenses-on-demand

Abstract

Switchable metasurfaces can actively control the functionality of integrated metadevices with high efficiency and on ultra-small length scales. Such metadevices include active lenses, dynamic diffractive optical elements, or switchable holograms. Especially, for applications in emerging technologies such as AR (augmented reality) and VR (virtual reality) devices, sophisticated metaoptics with unique functionalities are crucially important. In particular, metaoptics which can be switched electrically on or off will allow to change the routing, focusing, or functionality in general of miniaturized optical components on demand. Here, we demonstrate metalenses-on-demand made from metallic polymer plasmonic nanoantennas which are electrically switchable at CMOS (complementary metal-oxide-semiconductor) compatible voltages of ±1 V. The nanoantennas exhibit plasmonic resonances which can be reversibly switched ON and OFF via the applied voltage, utilizing the optical metal-to-insulator transition of the metallic polymer. Ultimately, we realize an electro-active non-volatile multi-functional metaobjective composed of two metalenses, whose unique optical states can be set on demand. Overall, our work opens up the possibility for a new level of electro-optical elements for ultra-compact photonic integration.

您可能还喜欢...

Paper