Ultrahigh-density 3D holographic projection by scattering-assisted dynamic holography
PubDate: Mar 2023
Teams: University of Science and Technology of China;Institut National de la Recherche Scientifique;National University of Singapore, Singapore
Writers: Panpan Yu, Yifan Liu, Ziqiang Wang, Jinyang Liang, Xingsi Liu, Yinmei Li, Chengwei Qiu, and Lei Gong
PDF: Ultrahigh-density 3D holographic projection by scattering-assisted dynamic holography
Abstract
Computer-generated holography offers a promising route to three-dimensional (3D) video displays. To realize a realistic-looking 3D display, the critical challenge is to create a 3D hologram that enables high-density multi-plane projection with full depth control. However, two long-existing issues in current digital holographic techniques, low axial resolution and high inter-plane crosstalk, prevent fine depth control and therefore limit the ultimate quality. Here, we report 3D scattering-assisted dynamic holography (3D-SDH) that further breaks the depth-control limit of the state-of-the-art method. Our approach achieves orders of magnitude improvement in axial resolution and greatly suppresses crosstalk, enabling ultrahigh-density 3D holographic projection. Moreover, 3D-SDH enables dynamic 3D vectorial projections via phase-only holograms. The concept is validated through both simulations and experiments, where dynamic projections of 3D point-cloud objects onto high-density successive planes are demonstrated. Our work opens perspectives for 3D holographic technology with ultra-fine depth control, dynamic projection, and polarization multiplexing functionalities.