Celeb-FBI: A Benchmark Dataset on Human Full Body Images and Age, Gender, Height and Weight Estimation using Deep Learning Approach
PubDate: June 2024
Teams:: Ahsanullah University of Science and Technology
Writers:Pronay Debnath, Usafa Akther Rifa, Busra Kamal Rafa, Ali Haider Talukder Akib, Md. Aminur Rahman
PDF:Celeb-FBI: A Benchmark Dataset on Human Full Body Images and Age, Gender, Height and Weight Estimation using Deep Learning Approach
Abstract
Hand Gesture Recognition (HGR) enables intuitive human-computer interactions in various real-world contexts. However, existing frameworks often struggle to meet the real-time requirements essential for practical HGR applications. This study introduces a robust, skeleton-based framework for dynamic HGR that simplifies the recognition of dynamic hand gestures into a static image classification task, effectively reducing both hardware and computational demands. Our framework utilizes a data-level fusion technique to encode 3D skeleton data from dynamic gestures into static RGB spatiotemporal images. It incorporates a specialized end-to-end Ensemble Tuner (e2eET) Multi-Stream CNN architecture that optimizes the semantic connections between data representations while minimizing computational needs. Tested across five benchmark datasets (SHREC'17, DHG-14/28, FPHA, LMDHG, and CNR), the framework showed competitive performance with the state-of-the-art. Its capability to support real-time HGR applications was also demonstrated through deployment on standard consumer PC hardware, showcasing low latency and minimal resource usage in real-world settings. The successful deployment of this framework underscores its potential to enhance real-time applications in fields such as virtual/augmented reality, ambient intelligence, and assistive technologies, providing a scalable and efficient solution for dynamic gesture recognition.