跳至内容
  • 首页
  • 资讯
  • 行业方案
  • 付费阅读
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群
  • All
  • XR
  • CV
  • CG
  • HCI
  • Video
  • Optics
  • Perception
  • Reconstruction
空 挡 广 告 位 | 空 挡 广 告 位

LaDTalk: Latent Denoising for Synthesizing Talking Head Videos with High Frequency Details

小编 广东客   |   分类:CV   |   2025年2月27日

Note: We don't have the ability to review paper

PubDate: Feb 2025

Teams:Beihang University, Beijing Academy of Blockchain and Edge Computing, Psyche AI,The University of Alabama at Birmingham

Writers:Jian Yang, Xukun Wang, Wentao Wang, Guoming Li, Qihang Fang, Ruihong Yuan, Tianyang Wang, Jason Zhaoxin Fan

PDF:LaDTalk: Latent Denoising for Synthesizing Talking Head Videos with High Frequency Details

Abstract

Audio-driven talking head generation is a pivotal area within film-making and Virtual Reality. Although existing methods have made significant strides following the end-to-end paradigm, they still encounter challenges in producing videos with high-frequency details due to their limited expressivity in this domain. This limitation has prompted us to explore an effective post-processing approach to synthesize photo-realistic talking head videos. Specifically, we employ a pretrained Wav2Lip model as our foundation model, leveraging its robust audio-lip alignment capabilities. Drawing on the theory of Lipschitz Continuity, we have theoretically established the noise robustness of Vector Quantised Auto Encoders (VQAEs). Our experiments further demonstrate that the high-frequency texture deficiency of the foundation model can be temporally consistently recovered by the Space-Optimised Vector Quantised Auto Encoder (SOVQAE) we introduced, thereby facilitating the creation of realistic talking head videos. We conduct experiments on both the conventional dataset and the High-Frequency TalKing head (HFTK) dataset that we curated. The results indicate that our method, LaDTalk, achieves new state-of-the-art video quality and out-of-domain lip synchronization performance.

本文链接:https://paper.nweon.com/16220

您可能还喜欢...

  • TEyeD: Over 20 million real-world eye images with Pupil, Eyelid, and Iris 2D and 3D Segmentations, 2D and 3D Landmarks, 3D Eyeball, Gaze Vector, and Eye Movement Types

    2021年03月09日 映维

  • Robust Dynamic Radiance Fields

    2023年07月06日 映维

  • OpenEDS: Open Eye Dataset

    2020年08月10日 映维

关注:

RSS 最新AR/VR行业分享

  • XR日报:Meta自称是AR真正的信徒,Vision Pro开放摄像头API+意念操控 2025年5月14日
  • 印度混合现实初创公司Flam获得1400万美元A轮融资 2025年5月14日
  • 三星发布5000 ppi OLEDoS:亮度15000尼特,8K VR显示质量 2025年5月14日
  • Meta CTO表示和扎克伯格都是“AR眼镜的真正信徒” 2025年5月14日
  • Google I/O 2025前瞻:AI眼镜原型亮相,Gemini多模态交互重塑无界面计算 2025年5月14日

RSS 最新AR/VR专利

  • Sony Patent | Information processing device and information processing method 2025年5月8日
  • Niantic Patent | Maintaining object alignment in 3d map segments 2025年5月8日
  • Samsung Patent | Deposition mask and method for manufacturing the same 2025年5月8日
  • ARM Patent | Firearm training system 2025年5月8日
  • Apple Patent | Electronic device system with supplemental lenses 2025年5月8日

RSS 最新AR/VR行业招聘

  • Apple AR/VR Job | Senior Software QA Engineer - Apple Vision Pro 2024年11月12日
  • Apple AR/VR Job | System Product Design Engineer - Apple Vision Pro 2024年11月12日
  • Microsoft AR/VR Job | Principal Software Engineer -Teams Premium Services 2024年11月12日
  • Meta AR/VR Job | Software Engineer - XR Codec Interactions and Avatars Team 2024年11月12日
  • Meta AR/VR Job | Product Cost Engineer 2024年11月12日

联系微信:ovalics

版权所有:广州映维网络有限公司 © 2025

备案许可:粤ICP备17113731号-2

粤公网安备 44011302004835号

友情链接: AR/VR行业导航

读者QQ群:251118691

Quest QQ群:526200310

开发者QQ群:688769630

Paper