跳至内容
  • 首页
  • 资讯
  • 资源下载
  • 行业方案
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群
  • All
  • XR
  • CV
  • CG
  • HCI
  • Video
  • Optics
  • Perception
  • Reconstruction

LaDTalk: Latent Denoising for Synthesizing Talking Head Videos with High Frequency Details

编辑:广东客   |   分类:CV   |   2025年2月27日

Note: We don't have the ability to review paper

PubDate: Feb 2025

Teams:Beihang University, Beijing Academy of Blockchain and Edge Computing, Psyche AI,The University of Alabama at Birmingham

Writers:Jian Yang, Xukun Wang, Wentao Wang, Guoming Li, Qihang Fang, Ruihong Yuan, Tianyang Wang, Jason Zhaoxin Fan

PDF:LaDTalk: Latent Denoising for Synthesizing Talking Head Videos with High Frequency Details

Abstract

Audio-driven talking head generation is a pivotal area within film-making and Virtual Reality. Although existing methods have made significant strides following the end-to-end paradigm, they still encounter challenges in producing videos with high-frequency details due to their limited expressivity in this domain. This limitation has prompted us to explore an effective post-processing approach to synthesize photo-realistic talking head videos. Specifically, we employ a pretrained Wav2Lip model as our foundation model, leveraging its robust audio-lip alignment capabilities. Drawing on the theory of Lipschitz Continuity, we have theoretically established the noise robustness of Vector Quantised Auto Encoders (VQAEs). Our experiments further demonstrate that the high-frequency texture deficiency of the foundation model can be temporally consistently recovered by the Space-Optimised Vector Quantised Auto Encoder (SOVQAE) we introduced, thereby facilitating the creation of realistic talking head videos. We conduct experiments on both the conventional dataset and the High-Frequency TalKing head (HFTK) dataset that we curated. The results indicate that our method, LaDTalk, achieves new state-of-the-art video quality and out-of-domain lip synchronization performance.

本文链接:https://paper.nweon.com/16220

您可能还喜欢...

  • Unsupervised Human Pose Estimation through Transforming Shape Templates

    2021年06月29日 映维

  • Application and Evaluation of Lighthouse Technology for Precision Motion Capture

    2020年10月26日 映维

  • 3181a82650cff433ad8b04129814ccea-thumb-medium

    Optimal Camera Placement for Motion Capture Systems

    2020年11月06日 映维

关注:

最新AR/VR行业分享

  • ★ 夏普发布198g系留式VR眼镜,11月下旬启动众筹 2025年11月1日
  • ★ 2025年11月01日美国专利局新申请AR/VR专利摘选 2025年11月1日
  • ★ 映维日报:苹果专利用AR/VR校准家庭影院,xMEMS完成2100万美元D轮融资 2025年10月31日
  • ★ XR+机器人:探秘用头显远程操控的NEO如何重新定义家务活 2025年10月31日
  • ★ xMEMS完成2100万美元D轮融资推进XR眼镜技术研发 2025年10月31日

最新AR/VR专利

  • ★ Snap Patent | Led illuminated projector 2025年10月30日
  • ★ Meta Patent | Sensor shift for optical image stabilization and focusing in compact camera devices 2025年10月30日
  • ★ Meta Patent | Photo spacer and column spacer design for lcd display 2025年10月30日
  • ★ MagicLeap Patent | Spectator view of virtual and physical objects 2025年10月30日
  • ★ Lumus Patent | Optical system for directing an image for viewing 2025年10月30日

最新AR/VR行业招聘

  • ★ Microsoft AR/VR Job | High Performance Compute, Director 2025年6月5日
  • ★ Microsoft AR/VR Job | Data Center Technician/ Technicien de Centre de Données 2025年6月3日
  • ★ Microsoft AR/VR Job | Senior Product Designer 2025年5月16日
  • ★ Apple AR/VR Job | AirPlay Audio Engineer 2025年3月27日
  • ★ Apple AR/VR Job | iOS Perception Engineer 2025年3月27日
  • 首页
  • 资讯
  • 资源下载
  • 行业方案
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群

联系微信:ovalics

版权所有:广州映维网络有限公司 © 2025

备案许可:粤ICP备17113731号-2

备案粤公网安备:44011302004835号

友情链接: AR/VR行业导航

读者QQ群:251118691

Quest QQ群:526200310

开发者QQ群:688769630

Paper