跳至内容
  • 首页
  • 资讯
  • 资源下载
  • 行业方案
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群
  • All
  • XR
  • CV
  • CG
  • HCI
  • Video
  • Optics
  • Perception
  • Reconstruction

Avat3r: Large Animatable Gaussian Reconstruction Model for High-fidelity 3D Head Avatars

小编 广东客   |   分类:CV   |   发布日期 2025年3月4日

Note: We don't have the ability to review paper

PubDate: Feb 2025

Teams:Technical University of Munich,Meta Reality Labs

Writers:Tobias Kirschstein, Javier Romero, Artem Sevastopolsky, Matthias Nießner, Shunsuke Saito

PDF:Avat3r: Large Animatable Gaussian Reconstruction Model for High-fidelity 3D Head Avatars

Abstract

Traditionally, creating photo-realistic 3D head avatars requires a studio-level multi-view capture setup and expensive optimization during test-time, limiting the use of digital human doubles to the VFX industry or offline renderings.

To address this shortcoming, we present Avat3r, which regresses a high-quality and animatable 3D head avatar from just a few input images, vastly reducing compute requirements during inference. More specifically, we make Large Reconstruction Models animatable and learn a powerful prior over 3D human heads from a large multi-view video dataset. For better 3D head reconstructions, we employ position maps from DUSt3R and generalized feature maps from the human foundation model Sapiens. To animate the 3D head, our key discovery is that simple cross-attention to an expression code is already sufficient. Finally, we increase robustness by feeding input images with different expressions to our model during training, enabling the reconstruction of 3D head avatars from inconsistent inputs, e.g., an imperfect phone capture with accidental movement, or frames from a monocular video.

We compare Avat3r with current state-of-the-art methods for few-input and single-input scenarios, and find that our method has a competitive advantage in both tasks. Finally, we demonstrate the wide applicability of our proposed model, creating 3D head avatars from images of different sources, smartphone captures, single images, and even out-of-domain inputs like antique busts.

本文链接:https://paper.nweon.com/16226

您可能还喜欢...

  • EmojiHeroVR: A Study on Facial Expression Recognition under Partial Occlusion from Head-Mounted Displays

    2025年02月27日 广东客

  • Neural Architecture Search of Hybrid Models for NPU-CIM Heterogeneous AR/VR Devices

    2025年03月27日 广东客

  • ORCa: Glossy Objects as Radiance Field Cameras

    2023年05月30日 映维

关注:

RSS 最新AR/VR行业分享

  • 映维日报:Meta研发全身运动预测模型RPM,辽宁机电职院97万元招标AI-VR实训中心 2025年7月18日
  • 吉林省农业农村厅70万元招标"吉品味道"VR体验馆 2025年7月18日
  • 辽宁机电职院97万元建设AI虚拟现实实训中心 2025年7月18日
  • 联通沃音乐57万元采购英歌舞VR内容 2025年7月18日
  • 黑龙江省科技馆40万元招标VR大空间科普项目 2025年7月18日

RSS 最新AR/VR专利

  • Niantic Patent | Magnetic sensor calibration using vio system 2025年7月17日
  • Snap Patent | Augmented reality-based translations associated with travel 2025年7月17日
  • Google Patent | Navigating with mobile device and head-mounted device 2025年7月17日
  • HTC Patent | Head-mounted display, pose tracking system, and method 2025年7月17日
  • DigiLens Patent | Compact projector for display system 2025年7月17日

RSS 最新AR/VR行业招聘

  • Microsoft AR/VR Job | High Performance Compute, Director 2025年6月5日
  • Microsoft AR/VR Job | Data Center Technician/ Technicien de Centre de Données 2025年6月3日
  • Microsoft AR/VR Job | Senior Product Designer 2025年5月16日
  • Apple AR/VR Job | AirPlay Audio Engineer 2025年3月27日
  • Apple AR/VR Job | iOS Perception Engineer 2025年3月27日
  • 首页
  • 资讯
  • 资源下载
  • 行业方案
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群

联系微信:ovalics

版权所有:广州映维网络有限公司 © 2025

备案许可:粤ICP备17113731号-2

粤公网安备 44011302004835号

友情链接: AR/VR行业导航

读者QQ群:251118691

Quest QQ群:526200310

开发者QQ群:688769630

Paper