跳至内容
  • 首页
  • 资讯
  • 资源下载
  • 行业方案
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群
  • All
  • XR
  • CV
  • CG
  • HCI
  • Video
  • Optics
  • Perception
  • Reconstruction

Avat3r: Large Animatable Gaussian Reconstruction Model for High-fidelity 3D Head Avatars

编辑:广东客   |   分类:CV   |   2025年3月4日

Note: We don't have the ability to review paper

PubDate: Feb 2025

Teams:Technical University of Munich,Meta Reality Labs

Writers:Tobias Kirschstein, Javier Romero, Artem Sevastopolsky, Matthias Nießner, Shunsuke Saito

PDF:Avat3r: Large Animatable Gaussian Reconstruction Model for High-fidelity 3D Head Avatars

Abstract

Traditionally, creating photo-realistic 3D head avatars requires a studio-level multi-view capture setup and expensive optimization during test-time, limiting the use of digital human doubles to the VFX industry or offline renderings.

To address this shortcoming, we present Avat3r, which regresses a high-quality and animatable 3D head avatar from just a few input images, vastly reducing compute requirements during inference. More specifically, we make Large Reconstruction Models animatable and learn a powerful prior over 3D human heads from a large multi-view video dataset. For better 3D head reconstructions, we employ position maps from DUSt3R and generalized feature maps from the human foundation model Sapiens. To animate the 3D head, our key discovery is that simple cross-attention to an expression code is already sufficient. Finally, we increase robustness by feeding input images with different expressions to our model during training, enabling the reconstruction of 3D head avatars from inconsistent inputs, e.g., an imperfect phone capture with accidental movement, or frames from a monocular video.

We compare Avat3r with current state-of-the-art methods for few-input and single-input scenarios, and find that our method has a competitive advantage in both tasks. Finally, we demonstrate the wide applicability of our proposed model, creating 3D head avatars from images of different sources, smartphone captures, single images, and even out-of-domain inputs like antique busts.

本文链接:https://paper.nweon.com/16226

您可能还喜欢...

  • bfc0364a4b2206e283f57c7dafe6ec3e-thumb-medium

    ORCa: Glossy Objects as Radiance Field Cameras

    2023年05月30日 映维

  • 27d0c91efacc31bfe407d10819ad1391-thumb-medium

    Real-time Pupil Tracking from Monocular Video for Digital Puppetry

    2020年06月22日 映维

  • Sensor Simulation for Monocular Depth Estimation using Deep Neural Networks

    2022年04月26日 映维

关注:

最新AR/VR行业分享

  • ★ XR手术引导平台MediView完成2400万美元A轮融资 2025年10月7日
  • ★ “痛”临其境,疼痛感知将为XR带来全新维度 2025年10月7日
  • ★ 填补Vision Pro内容空白,苹果启动Vision Pro沉浸式内容创作工作坊 2025年10月7日
  • ★ 苹果推送visionOS 26.1开发者预览版23N5028e更新 2025年10月7日
  • ★ 彭博社:苹果2026年发布无屏智能眼镜,第二代设备将为带屏眼镜 2025年10月6日

最新AR/VR专利

  • ★ Samsung Patent | Method of manufacturing deposition mask and method of manufacturing display device using the deposition mask 2025年10月2日
  • ★ Sony Patent | Enabling the tracking of a remote-play client in virtual reality without additional sensors 2025年10月2日
  • ★ Sony Patent | Information processing apparatus and image generation method 2025年10月2日
  • ★ Sony Patent | Information processing device, information processing system, method for controlling information processing device, and program 2025年10月2日
  • ★ Sony Patent | Information processing apparatus, information processing system, information processing apparatus control method, and program 2025年10月2日

最新AR/VR行业招聘

  • ★ Microsoft AR/VR Job | High Performance Compute, Director 2025年6月5日
  • ★ Microsoft AR/VR Job | Data Center Technician/ Technicien de Centre de Données 2025年6月3日
  • ★ Microsoft AR/VR Job | Senior Product Designer 2025年5月16日
  • ★ Apple AR/VR Job | AirPlay Audio Engineer 2025年3月27日
  • ★ Apple AR/VR Job | iOS Perception Engineer 2025年3月27日
  • 首页
  • 资讯
  • 资源下载
  • 行业方案
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群

联系微信:ovalics

版权所有:广州映维网络有限公司 © 2025

备案许可:粤ICP备17113731号-2

备案粤公网安备:44011302004835号

友情链接: AR/VR行业导航

读者QQ群:251118691

Quest QQ群:526200310

开发者QQ群:688769630

Paper