跳至内容
  • 首页
  • 资讯
  • 行业方案
  • 付费阅读
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群
  • All
  • XR
  • CV
  • CG
  • HCI
  • Video
  • Optics
  • Perception
  • Reconstruction
空 挡 广 告 位 | 空 挡 广 告 位

Avat3r: Large Animatable Gaussian Reconstruction Model for High-fidelity 3D Head Avatars

小编 广东客   |   分类:CV   |   发布日期 2025年3月4日

Note: We don't have the ability to review paper

PubDate: Feb 2025

Teams:Technical University of Munich,Meta Reality Labs

Writers:Tobias Kirschstein, Javier Romero, Artem Sevastopolsky, Matthias Nießner, Shunsuke Saito

PDF:Avat3r: Large Animatable Gaussian Reconstruction Model for High-fidelity 3D Head Avatars

Abstract

Traditionally, creating photo-realistic 3D head avatars requires a studio-level multi-view capture setup and expensive optimization during test-time, limiting the use of digital human doubles to the VFX industry or offline renderings.

To address this shortcoming, we present Avat3r, which regresses a high-quality and animatable 3D head avatar from just a few input images, vastly reducing compute requirements during inference. More specifically, we make Large Reconstruction Models animatable and learn a powerful prior over 3D human heads from a large multi-view video dataset. For better 3D head reconstructions, we employ position maps from DUSt3R and generalized feature maps from the human foundation model Sapiens. To animate the 3D head, our key discovery is that simple cross-attention to an expression code is already sufficient. Finally, we increase robustness by feeding input images with different expressions to our model during training, enabling the reconstruction of 3D head avatars from inconsistent inputs, e.g., an imperfect phone capture with accidental movement, or frames from a monocular video.

We compare Avat3r with current state-of-the-art methods for few-input and single-input scenarios, and find that our method has a competitive advantage in both tasks. Finally, we demonstrate the wide applicability of our proposed model, creating 3D head avatars from images of different sources, smartphone captures, single images, and even out-of-domain inputs like antique busts.

本文链接:https://paper.nweon.com/16226

您可能还喜欢...

  • HULC: 3D Human Motion Capture with Pose Manifold Sampling and Dense Contact Guidance

    2022年05月16日 映维

  • Perceptual Requirements for Eye-tracked Distortion Correction in VR

    2022年08月06日 映维

  • Procams-Based Cybernetics

    2020年07月20日 映维

关注:

RSS 最新AR/VR行业分享

  • XR日报:苹果低功耗AI眼镜芯片,三星单层波导全彩显示,PICO大更新Native XR SDK 2025年5月9日
  • 生存建造类游戏《火星求生》VR版登陆Quest Store 2025年5月9日
  • Meta开源MR技术演示《North Star》 展示Quest顶尖视觉与交互 2025年5月9日
  • 美军测试AR全息战场模拟系统 头显+沙盘实现多兵种协同推演 2025年5月9日
  • 三星突破AR眼镜技术瓶颈,单层纳米波导实现全彩显示 2025年5月9日

RSS 最新AR/VR专利

  • Sony Patent | Information processing device and information processing method 2025年5月8日
  • Niantic Patent | Maintaining object alignment in 3d map segments 2025年5月8日
  • Samsung Patent | Deposition mask and method for manufacturing the same 2025年5月8日
  • ARM Patent | Firearm training system 2025年5月8日
  • Apple Patent | Electronic device system with supplemental lenses 2025年5月8日

RSS 最新AR/VR行业招聘

  • Apple AR/VR Job | Senior Software QA Engineer - Apple Vision Pro 2024年11月12日
  • Apple AR/VR Job | System Product Design Engineer - Apple Vision Pro 2024年11月12日
  • Microsoft AR/VR Job | Principal Software Engineer -Teams Premium Services 2024年11月12日
  • Meta AR/VR Job | Software Engineer - XR Codec Interactions and Avatars Team 2024年11月12日
  • Meta AR/VR Job | Product Cost Engineer 2024年11月12日

联系微信:ovalics

版权所有:广州映维网络有限公司 © 2025

备案许可:粤ICP备17113731号-2

粤公网安备 44011302004835号

友情链接: AR/VR行业导航

读者QQ群:251118691

Quest QQ群:526200310

开发者QQ群:688769630

Paper