跳至内容
  • 首页
  • 资讯
  • 资源下载
  • 行业方案
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群
  • All
  • XR
  • CV
  • CG
  • HCI
  • Video
  • Optics
  • Perception
  • Reconstruction

In-Place Panoptic Radiance Field Segmentation with Perceptual Prior for 3D Scene Understanding

编辑:广东客   |   分类:CV   |   2025年3月6日

Note: We don't have the ability to review paper

PubDate: Otc 2024

Teams:Shenghao Li

Writers: Shenghao Li

PDF:In-Place Panoptic Radiance Field Segmentation with Perceptual Prior for 3D Scene Understanding

Abstract

Accurate 3D scene representation and panoptic understanding are essential for applications such as virtual reality, robotics, and autonomous driving. However, challenges persist with existing methods, including precise 2D-to-3D mapping, handling complex scene characteristics like boundary ambiguity and varying scales, and mitigating noise in panoptic pseudo-labels. This paper introduces a novel perceptual-prior-guided 3D scene representation and panoptic understanding method, which reformulates panoptic understanding within neural radiance fields as a linear assignment problem involving 2D semantics and instance recognition. Perceptual information from pre-trained 2D panoptic segmentation models is incorporated as prior guidance, thereby synchronizing the learning processes of appearance, geometry, and panoptic understanding within neural radiance fields. An implicit scene representation and understanding model is developed to enhance generalization across indoor and outdoor scenes by extending the scale-encoded cascaded grids within a reparameterized domain distillation framework. This model effectively manages complex scene attributes and generates 3D-consistent scene representations and panoptic understanding outcomes for various scenes. Experiments and ablation studies under challenging conditions, including synthetic and real-world scenes, demonstrate the proposed method's effectiveness in enhancing 3D scene representation and panoptic segmentation accuracy.

本文链接:https://paper.nweon.com/16228

您可能还喜欢...

  • e2c5d586573548bdd8698e5abd21dacf-thumb-medium

    Mixed Reality Depth Contour Occlusion Using Binocular Similarity Matching and Three-dimensional Contour Optimisation

    2022年03月21日 映维

  • 9be02ef3d3f52c17df68f696752fc4b2-thumb-medium

    Hyperparameter-Free Losses for Model-Based Monocular Reconstruction

    2020年08月13日 映维

  • 836050604b9f30e896c4e0804d427fab-thumb-medium

    Unsupervised Learning of Depth and Ego-Motion from Cylindrical Panoramic Video

    2020年08月05日 映维

关注:

最新AR/VR行业分享

  • ★ 暂无数据(等待更新) 2025年12月5日

最新AR/VR专利

  • ★ 暂无数据(等待更新) 2025年12月5日

最新AR/VR行业招聘

  • ★ 暂无数据(等待更新) 2025年12月5日
  • 首页
  • 资讯
  • 资源下载
  • 行业方案
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群

联系微信:ovalics

版权所有:广州映维网络有限公司 © 2025

备案许可:粤ICP备17113731号-2

备案粤公网安备:44011302004835号

友情链接: AR/VR行业导航

读者QQ群:251118691

Quest QQ群:526200310

开发者QQ群:688769630

Paper