跳至内容
  • 首页
  • 资讯
  • 行业方案
  • 付费阅读
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群
  • All
  • XR
  • CV
  • CG
  • HCI
  • Video
  • Optics
  • Perception
  • Reconstruction

CUBE360: Learning Cubic Field Representation for Monocular 360 Depth Estimation for Virtual Reality

小编 广东客   |   分类:CV   |   2025年3月6日

Note: We don't have the ability to review paper

PubDate: Oct 2024

Teams:USTC; HKUST(GZ)

Writers:Wenjie Chang, Hao Ai, Tianzhu Zhang, Lin Wang

PDF:CUBE360: Learning Cubic Field Representation for Monocular 360 Depth Estimation for Virtual Reality

Abstract

Panoramic images provide comprehensive scene information and are suitable for VR applications. Obtaining corresponding depth maps is essential for achieving immersive and interactive experiences. However, panoramic depth estimation presents significant challenges due to the severe distortion caused by equirectangular projection (ERP) and the limited availability of panoramic RGB-D datasets. Inspired by the recent success of neural rendering, we propose a novel method, named CUBE360, that learns a cubic field composed of multiple MPIs from a single panoramic image for continuous depth estimation at any view direction. Our CUBE360 employs cubemap projection to transform an ERP image into six faces and extract the MPIs for each, thereby reducing the memory consumption required for MPI processing of high-resolution data. Additionally, this approach avoids the computational complexity of handling the uneven pixel distribution inherent to equirectangular projectio. An attention-based blending module is then employed to learn correlations among the MPIs of cubic faces, constructing a cubic field representation with color and density information at various depth levels. Furthermore, a novel sampling strategy is introduced for rendering novel views from the cubic field at both cubic and planar scales. The entire pipeline is trained using photometric loss calculated from rendered views within a self-supervised learning approach, enabling training on 360 videos without depth annotations. Experiments on both synthetic and real-world datasets demonstrate the superior performance of CUBE360 compared to prior SSL methods. We also highlight its effectiveness in downstream applications, such as VR roaming and visual effects, underscoring CUBE360's potential to enhance immersive experiences.

本文链接:https://paper.nweon.com/16230

您可能还喜欢...

  • Perceptual deep depth super-resolution

    2020年08月05日 映维

  • Motion Projection Consistency Based 3D Human Pose Estimation with Virtual Bones from Monocular Videos

    2021年07月20日 映维

  • Effects of volumetric capture avatars on social presence in immersive virtual environments

    2020年11月18日 映维

关注:

RSS 最新AR/VR行业分享

  • Steam 6月数据:Meta Quest 3异常暴跌6.38% 2025年7月3日
  • XR日报:社区吐槽Quest独占VR游戏行业影响,PICO启动OS 5.14.0.U公测 2025年7月3日
  • 微软专利提出空间语义感知AI系统,实现混合现实环境智能协作 2025年7月3日
  • 谷歌专利提出基于应用内容后处理的AR智能渲染系统 2025年7月3日
  • Reddit用户热议吐槽Meta Quest独占策略对VR行业的影响 2025年7月3日

RSS 最新AR/VR专利

  • Samsung Patent | Deposition equipment 2025年6月26日
  • Snap Patent | Determining gaze direction to generate augmented reality content 2025年6月26日
  • Apple Patent | Eye characteristic determination 2025年6月26日
  • Snap Patent | Eyewear device charging case 2025年6月26日
  • Qualcomm Patent | Vehicle and mobile device interface for vehicle occupant assistance 2025年6月26日

RSS 最新AR/VR行业招聘

  • Microsoft AR/VR Job | High Performance Compute, Director 2025年6月5日
  • Microsoft AR/VR Job | Data Center Technician/ Technicien de Centre de Données 2025年6月3日
  • Microsoft AR/VR Job | Senior Product Designer 2025年5月16日
  • Apple AR/VR Job | AirPlay Audio Engineer 2025年3月27日
  • Apple AR/VR Job | iOS Perception Engineer 2025年3月27日

联系微信:ovalics

版权所有:广州映维网络有限公司 © 2025

备案许可:粤ICP备17113731号-2

粤公网安备 44011302004835号

友情链接: AR/VR行业导航

读者QQ群:251118691

Quest QQ群:526200310

开发者QQ群:688769630

Paper