跳至内容
  • 首页
  • 资讯
  • 行业方案
  • 付费阅读
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群
广告
  • All
  • XR
  • CV
  • CG
  • HCI
  • Video
  • Optics
  • Perception
  • Reconstruction
空 挡 广 告 位 | 空 挡 广 告 位

CUBE360: Learning Cubic Field Representation for Monocular 360 Depth Estimation for Virtual Reality

小编 广东客   |   分类:CV   |   2025年3月6日

Note: We don't have the ability to review paper

PubDate: Oct 2024

Teams:USTC; HKUST(GZ)

Writers:Wenjie Chang, Hao Ai, Tianzhu Zhang, Lin Wang

PDF:CUBE360: Learning Cubic Field Representation for Monocular 360 Depth Estimation for Virtual Reality

Abstract

Panoramic images provide comprehensive scene information and are suitable for VR applications. Obtaining corresponding depth maps is essential for achieving immersive and interactive experiences. However, panoramic depth estimation presents significant challenges due to the severe distortion caused by equirectangular projection (ERP) and the limited availability of panoramic RGB-D datasets. Inspired by the recent success of neural rendering, we propose a novel method, named CUBE360, that learns a cubic field composed of multiple MPIs from a single panoramic image for continuous depth estimation at any view direction. Our CUBE360 employs cubemap projection to transform an ERP image into six faces and extract the MPIs for each, thereby reducing the memory consumption required for MPI processing of high-resolution data. Additionally, this approach avoids the computational complexity of handling the uneven pixel distribution inherent to equirectangular projectio. An attention-based blending module is then employed to learn correlations among the MPIs of cubic faces, constructing a cubic field representation with color and density information at various depth levels. Furthermore, a novel sampling strategy is introduced for rendering novel views from the cubic field at both cubic and planar scales. The entire pipeline is trained using photometric loss calculated from rendered views within a self-supervised learning approach, enabling training on 360 videos without depth annotations. Experiments on both synthetic and real-world datasets demonstrate the superior performance of CUBE360 compared to prior SSL methods. We also highlight its effectiveness in downstream applications, such as VR roaming and visual effects, underscoring CUBE360's potential to enhance immersive experiences.

本文链接:https://paper.nweon.com/16230
映维网(nweon.com)
映维网(nweon.com)

您可能还喜欢...

  • Bidirectional Projection Network for Cross Dimension Scene Understanding

    2021年07月01日 映维

  • Real-time Pupil Tracking from Monocular Video for Digital Puppetry

    2020年06月22日 映维

  • Harmony4D: A Video Dataset for In-The-Wild Close Human Interactions

    2025年04月10日 广东客

关注:

RSS 最新AR/VR行业分享

  • XR日报:Quest App超过1万款,开发者规模增长100倍,Meta计划增开XR/AI实体店 2025年5月29日
  • 索尼专利研发机器人眼系统验证头显眼动追踪精度 2025年5月29日
  • Dispelix专利研发光谱调制技术降低AR波导干涉条纹 2025年5月29日
  • 扩大开店!Meta计划扩大实体零售业务推广XR及AI产品 2025年5月29日
  • 密歇根大学团队提出SAM引导的3D语义分割跨域自适应方法 2025年5月29日

RSS 最新AR/VR专利

  • Samsung Patent | Xr device, electronic device and control method thereof 2025年5月22日
  • Apple Patent | Suppression of hand gestures upon detection of peripheral events on a peripheral device 2025年5月22日
  • Ultraleap Patent | Systems and methods for machine control 2025年5月22日
  • Sony Patent | Information processing apparatus and information processing method 2025年5月22日
  • HTC Patent | Wearable device, gesture recognition method and non-transitory computer readable storage medium thereof 2025年5月22日

RSS 最新AR/VR行业招聘

  • Apple AR/VR Job | Senior Software QA Engineer - Apple Vision Pro 2024年11月12日
  • Apple AR/VR Job | System Product Design Engineer - Apple Vision Pro 2024年11月12日
  • Microsoft AR/VR Job | Principal Software Engineer -Teams Premium Services 2024年11月12日
  • Meta AR/VR Job | Software Engineer - XR Codec Interactions and Avatars Team 2024年11月12日
  • Meta AR/VR Job | Product Cost Engineer 2024年11月12日

联系微信:ovalics

版权所有:广州映维网络有限公司 © 2025

备案许可:粤ICP备17113731号-2

粤公网安备 44011302004835号

友情链接: AR/VR行业导航

读者QQ群:251118691

Quest QQ群:526200310

开发者QQ群:688769630

Paper