跳至内容
  • 首页
  • 资讯
  • 资源下载
  • 行业方案
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群
  • All
  • XR
  • CV
  • CG
  • HCI
  • Video
  • Optics
  • Perception
  • Reconstruction

Gesture2Text: A Generalizable Decoder for Word-Gesture Keyboards in XR Through Trajectory Coarse Discretization and Pre-training

编辑:广东客   |   分类:HCI   |   2025年3月27日

Note: We don't have the ability to review paper

PubDate: Otc 2024

Teams:Meta,University of Bristol

Writers:Junxiao Shen, Khadija Khaldi, Enmin Zhou, Hemant Bhaskar Surale, Amy Karlson

PDF:Gesture2Text: A Generalizable Decoder for Word-Gesture Keyboards in XR Through Trajectory Coarse Discretization and Pre-training

Abstract

Text entry with word-gesture keyboards (WGK) is emerging as a popular method and becoming a key interaction for Extended Reality (XR). However, the diversity of interaction modes, keyboard sizes, and visual feedback in these environments introduces divergent word-gesture trajectory data patterns, thus leading to complexity in decoding trajectories into text. Template-matching decoding methods, such as SHARK

2, are commonly used for these WGK systems because they are easy to implement and configure. However, these methods are susceptible to decoding inaccuracies for noisy trajectories. While conventional neural-network-based decoders (neural decoders) trained on word-gesture trajectory data have been proposed to improve accuracy, they have their own limitations: they require extensive data for training and deep-learning expertise for implementation. To address these challenges, we propose a novel solution that combines ease of implementation with high decoding accuracy: a generalizable neural decoder enabled by pre-training on large-scale coarsely discretized word-gesture trajectories. This approach produces a ready-to-use WGK decoder that is generalizable across mid-air and on-surface WGK systems in augmented reality (AR) and virtual reality (VR), which is evident by a robust average Top-4 accuracy of 90.4% on four diverse datasets. It significantly outperforms SHARK

2 with a 37.2% enhancement and surpasses the conventional neural decoder by 7.4%. Moreover, the Pre-trained Neural Decoder's size is only 4 MB after quantization, without sacrificing accuracy, and it can operate in real-time, executing in just 97 milliseconds on Quest 3.

本文链接:https://paper.nweon.com/16249

您可能还喜欢...

  • b603326f0499f9d961c6b651f507830a-thumb-medium

    Cubely: virtual reality block-based programming environment

    2020年06月29日 映维

  • 4c40c3b91cf7a996fa8bd57b8cb71e22-thumb-medium

    Immersive VR as a Tool to Enhance Relaxation for Undergraduate Students with the Aim of Reducing Anxiety - A Pilot Study

    2020年08月06日 映维

  • Exploring Effective Real-Time Ergonomic Guidance Methods for Immersive Virtual Reality Workspace

    2024年06月25日 广东客

关注:

最新AR/VR行业分享

  • ★ PICO视频上新:马尔代夫/薄纱少女/星际危机 2025年10月11日
  • ★ VR偶像产业兴起:从韩国到日本,虚拟演出重塑粉丝经济 2025年10月11日
  • ★ Quest浏览器为混合现实放置功能实现即时WebXR命中测试 2025年10月11日
  • ★ Meta大量下架《Gorilla Tag》的山寨游戏 2025年10月11日
  • ★ Meta Quest 10月影视娱乐指南:驯龙高手真人版10日上线 2025年10月11日

最新AR/VR专利

  • ★ [RSS ERROR] 无法解析RSS 2025年10月11日

最新AR/VR行业招聘

  • ★ Microsoft AR/VR Job | High Performance Compute, Director 2025年6月5日
  • ★ Microsoft AR/VR Job | Data Center Technician/ Technicien de Centre de Données 2025年6月3日
  • ★ Microsoft AR/VR Job | Senior Product Designer 2025年5月16日
  • ★ Apple AR/VR Job | AirPlay Audio Engineer 2025年3月27日
  • ★ Apple AR/VR Job | iOS Perception Engineer 2025年3月27日
  • 首页
  • 资讯
  • 资源下载
  • 行业方案
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群

联系微信:ovalics

版权所有:广州映维网络有限公司 © 2025

备案许可:粤ICP备17113731号-2

备案粤公网安备:44011302004835号

友情链接: AR/VR行业导航

读者QQ群:251118691

Quest QQ群:526200310

开发者QQ群:688769630

Paper