跳至内容
  • 首页
  • 资讯
  • 行业方案
  • 付费阅读
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群
  • All
  • XR
  • CV
  • CG
  • HCI
  • Video
  • Optics
  • Perception
  • Reconstruction

Gesture2Text: A Generalizable Decoder for Word-Gesture Keyboards in XR Through Trajectory Coarse Discretization and Pre-training

小编 广东客   |   分类:HCI   |   2025年3月27日

Note: We don't have the ability to review paper

PubDate: Otc 2024

Teams:Meta,University of Bristol

Writers:Junxiao Shen, Khadija Khaldi, Enmin Zhou, Hemant Bhaskar Surale, Amy Karlson

PDF:Gesture2Text: A Generalizable Decoder for Word-Gesture Keyboards in XR Through Trajectory Coarse Discretization and Pre-training

Abstract

Text entry with word-gesture keyboards (WGK) is emerging as a popular method and becoming a key interaction for Extended Reality (XR). However, the diversity of interaction modes, keyboard sizes, and visual feedback in these environments introduces divergent word-gesture trajectory data patterns, thus leading to complexity in decoding trajectories into text. Template-matching decoding methods, such as SHARK

2, are commonly used for these WGK systems because they are easy to implement and configure. However, these methods are susceptible to decoding inaccuracies for noisy trajectories. While conventional neural-network-based decoders (neural decoders) trained on word-gesture trajectory data have been proposed to improve accuracy, they have their own limitations: they require extensive data for training and deep-learning expertise for implementation. To address these challenges, we propose a novel solution that combines ease of implementation with high decoding accuracy: a generalizable neural decoder enabled by pre-training on large-scale coarsely discretized word-gesture trajectories. This approach produces a ready-to-use WGK decoder that is generalizable across mid-air and on-surface WGK systems in augmented reality (AR) and virtual reality (VR), which is evident by a robust average Top-4 accuracy of 90.4% on four diverse datasets. It significantly outperforms SHARK

2 with a 37.2% enhancement and surpasses the conventional neural decoder by 7.4%. Moreover, the Pre-trained Neural Decoder's size is only 4 MB after quantization, without sacrificing accuracy, and it can operate in real-time, executing in just 97 milliseconds on Quest 3.

本文链接:https://paper.nweon.com/16249

您可能还喜欢...

  • 3D Mirrored Object Selection for Occluded Objects in Virtual Environments

    2021年08月19日 映维

  • Implementation of a Virtual Reality Interface for a Public Library

    2020年06月09日 映维

  • Evaluation of User Interfaces for Three-Dimensional Locomotion in Virtual Reality

    2023年03月02日 映维

关注:

RSS 最新AR/VR行业分享

  • XR日报: Cellid开发60° FOV AR投影仪,苹果调研用户规划XR产品路线 2025年7月1日
  • 武当山推出基于PICO VR的"入境武当"VR大空间文旅项目 2025年7月1日
  • Cellid开发60度视场AR眼镜微型投影仪 2025年7月1日
  • PICO推出暑期科幻季内容分享活动 2025年7月1日
  • HealthpointCapital收购XR医疗公司ImmersiveTouch多数股权 2025年7月1日

RSS 最新AR/VR专利

  • Samsung Patent | Deposition equipment 2025年6月26日
  • Snap Patent | Determining gaze direction to generate augmented reality content 2025年6月26日
  • Apple Patent | Eye characteristic determination 2025年6月26日
  • Snap Patent | Eyewear device charging case 2025年6月26日
  • Qualcomm Patent | Vehicle and mobile device interface for vehicle occupant assistance 2025年6月26日

RSS 最新AR/VR行业招聘

  • Microsoft AR/VR Job | High Performance Compute, Director 2025年6月5日
  • Microsoft AR/VR Job | Data Center Technician/ Technicien de Centre de Données 2025年6月3日
  • Microsoft AR/VR Job | Senior Product Designer 2025年5月16日
  • Apple AR/VR Job | AirPlay Audio Engineer 2025年3月27日
  • Apple AR/VR Job | iOS Perception Engineer 2025年3月27日

联系微信:ovalics

版权所有:广州映维网络有限公司 © 2025

备案许可:粤ICP备17113731号-2

粤公网安备 44011302004835号

友情链接: AR/VR行业导航

读者QQ群:251118691

Quest QQ群:526200310

开发者QQ群:688769630

Paper