跳至内容
  • 首页
  • 资讯
  • 资源下载
  • 行业方案
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群
  • All
  • XR
  • CV
  • CG
  • HCI
  • Video
  • Optics
  • Perception
  • Reconstruction

Gesture2Text: A Generalizable Decoder for Word-Gesture Keyboards in XR Through Trajectory Coarse Discretization and Pre-training

编辑:广东客   |   分类:HCI   |   2025年3月27日

Note: We don't have the ability to review paper

PubDate: Otc 2024

Teams:Meta,University of Bristol

Writers:Junxiao Shen, Khadija Khaldi, Enmin Zhou, Hemant Bhaskar Surale, Amy Karlson

PDF:Gesture2Text: A Generalizable Decoder for Word-Gesture Keyboards in XR Through Trajectory Coarse Discretization and Pre-training

Abstract

Text entry with word-gesture keyboards (WGK) is emerging as a popular method and becoming a key interaction for Extended Reality (XR). However, the diversity of interaction modes, keyboard sizes, and visual feedback in these environments introduces divergent word-gesture trajectory data patterns, thus leading to complexity in decoding trajectories into text. Template-matching decoding methods, such as SHARK

2, are commonly used for these WGK systems because they are easy to implement and configure. However, these methods are susceptible to decoding inaccuracies for noisy trajectories. While conventional neural-network-based decoders (neural decoders) trained on word-gesture trajectory data have been proposed to improve accuracy, they have their own limitations: they require extensive data for training and deep-learning expertise for implementation. To address these challenges, we propose a novel solution that combines ease of implementation with high decoding accuracy: a generalizable neural decoder enabled by pre-training on large-scale coarsely discretized word-gesture trajectories. This approach produces a ready-to-use WGK decoder that is generalizable across mid-air and on-surface WGK systems in augmented reality (AR) and virtual reality (VR), which is evident by a robust average Top-4 accuracy of 90.4% on four diverse datasets. It significantly outperforms SHARK

2 with a 37.2% enhancement and surpasses the conventional neural decoder by 7.4%. Moreover, the Pre-trained Neural Decoder's size is only 4 MB after quantization, without sacrificing accuracy, and it can operate in real-time, executing in just 97 milliseconds on Quest 3.

本文链接:https://paper.nweon.com/16249

您可能还喜欢...

  • c6b499505fd13fce00916a107171d8a1-thumb-medium

    Exploring Visual Techniques for Boundary Awareness During Interaction in Augmented Reality Head-Mounted Displays

    2020年11月25日 映维

  • a23b079e0dea7118d5994dd06e952a84-thumb-medium

    Encoding of tactile information in hand via skin-integrated wireless haptic interface

    2022年12月19日 映维

  • 83e88ead16d3274080998b47067c7e63-thumb-medium

    A Natural Bare-Hand Interaction Method With Augmented Reality for Constraint-Based Virtual Assembly

    2022年11月21日 映维

关注:

RSS 最新AR/VR行业分享

  • Vivo入局再次点燃空间计算火花,但有VR厂商已经赚到真金白银 2025年8月26日
  • 映维日报:Meta研发超薄平板激光AR显示技术,韩媒爆三星MR头显定价过万 2025年8月26日
  • 新疆库尔勒市科技馆62万元采购乡村科普VR眼镜设备 2025年8月26日
  • 天台县卫生健康局168万元采购5G+AR医疗设备 2025年8月26日
  • PICO与英特尔联合举办WTT电竞大满贯2025 VR乒乓球赛事 2025年8月26日

RSS 最新AR/VR专利

  • MagicLeap Patent | Identifying input for speech recognition engine 2025年8月21日
  • MagicLeap Patent | Cross reality system with wifi/gps based map merge 2025年8月21日
  • MagicLeap Patent | Cross reality system with prioritization of geolocation information for localization 2025年8月21日
  • MagicLeap Patent | Systems and methods for virtual and augmented reality 2025年8月21日
  • MagicLeap Patent | Configuring optical layers in imprint lithography processes 2025年8月21日

RSS 最新AR/VR行业招聘

  • Microsoft AR/VR Job | High Performance Compute, Director 2025年6月5日
  • Microsoft AR/VR Job | Data Center Technician/ Technicien de Centre de Données 2025年6月3日
  • Microsoft AR/VR Job | Senior Product Designer 2025年5月16日
  • Apple AR/VR Job | AirPlay Audio Engineer 2025年3月27日
  • Apple AR/VR Job | iOS Perception Engineer 2025年3月27日
  • 首页
  • 资讯
  • 资源下载
  • 行业方案
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群

联系微信:ovalics

版权所有:广州映维网络有限公司 © 2025

备案许可:粤ICP备17113731号-2

备案粤公网安备:44011302004835号

友情链接: AR/VR行业导航

读者QQ群:251118691

Quest QQ群:526200310

开发者QQ群:688769630

Paper