跳至内容
  • 首页
  • 资讯
  • 资源下载
  • 行业方案
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群
  • All
  • XR
  • CV
  • CG
  • HCI
  • Video
  • Optics
  • Perception
  • Reconstruction

Gesture2Text: A Generalizable Decoder for Word-Gesture Keyboards in XR Through Trajectory Coarse Discretization and Pre-training

编辑:广东客   |   分类:HCI   |   2025年3月27日

Note: We don't have the ability to review paper

PubDate: Otc 2024

Teams:Meta,University of Bristol

Writers:Junxiao Shen, Khadija Khaldi, Enmin Zhou, Hemant Bhaskar Surale, Amy Karlson

PDF:Gesture2Text: A Generalizable Decoder for Word-Gesture Keyboards in XR Through Trajectory Coarse Discretization and Pre-training

Abstract

Text entry with word-gesture keyboards (WGK) is emerging as a popular method and becoming a key interaction for Extended Reality (XR). However, the diversity of interaction modes, keyboard sizes, and visual feedback in these environments introduces divergent word-gesture trajectory data patterns, thus leading to complexity in decoding trajectories into text. Template-matching decoding methods, such as SHARK

2, are commonly used for these WGK systems because they are easy to implement and configure. However, these methods are susceptible to decoding inaccuracies for noisy trajectories. While conventional neural-network-based decoders (neural decoders) trained on word-gesture trajectory data have been proposed to improve accuracy, they have their own limitations: they require extensive data for training and deep-learning expertise for implementation. To address these challenges, we propose a novel solution that combines ease of implementation with high decoding accuracy: a generalizable neural decoder enabled by pre-training on large-scale coarsely discretized word-gesture trajectories. This approach produces a ready-to-use WGK decoder that is generalizable across mid-air and on-surface WGK systems in augmented reality (AR) and virtual reality (VR), which is evident by a robust average Top-4 accuracy of 90.4% on four diverse datasets. It significantly outperforms SHARK

2 with a 37.2% enhancement and surpasses the conventional neural decoder by 7.4%. Moreover, the Pre-trained Neural Decoder's size is only 4 MB after quantization, without sacrificing accuracy, and it can operate in real-time, executing in just 97 milliseconds on Quest 3.

本文链接:https://paper.nweon.com/16249

您可能还喜欢...

  • c58255431033cfd8599b9b823dbdb866-thumb-medium

    Where Do We Meet? Key Factors Influencing Collaboration Across Meeting Spaces

    2023年11月21日 映维

  • 1b5f17b4473dab52b274dd82c6131fcc-thumb-medium

    TapID: Rapid Touch Interaction in Virtual Reality using Wearable Sensing

    2021年03月23日 映维

  • ab140dab2f92df081ff02894b541dcf9-thumb-medium

    Development of a customizable interactions questionnaire (CIQ) for evaluating interactions with objects in augmented/virtual reality

    2023年01月31日 映维

关注:

最新AR/VR行业分享

  • ★ 夏普发布198g系留式VR眼镜,11月下旬启动众筹 2025年11月1日
  • ★ 2025年11月01日美国专利局新申请AR/VR专利摘选 2025年11月1日
  • ★ 映维日报:苹果专利用AR/VR校准家庭影院,xMEMS完成2100万美元D轮融资 2025年10月31日
  • ★ XR+机器人:探秘用头显远程操控的NEO如何重新定义家务活 2025年10月31日
  • ★ xMEMS完成2100万美元D轮融资推进XR眼镜技术研发 2025年10月31日

最新AR/VR专利

  • ★ Snap Patent | Led illuminated projector 2025年10月30日
  • ★ Meta Patent | Sensor shift for optical image stabilization and focusing in compact camera devices 2025年10月30日
  • ★ Meta Patent | Photo spacer and column spacer design for lcd display 2025年10月30日
  • ★ MagicLeap Patent | Spectator view of virtual and physical objects 2025年10月30日
  • ★ Lumus Patent | Optical system for directing an image for viewing 2025年10月30日

最新AR/VR行业招聘

  • ★ Microsoft AR/VR Job | High Performance Compute, Director 2025年6月5日
  • ★ Microsoft AR/VR Job | Data Center Technician/ Technicien de Centre de Données 2025年6月3日
  • ★ Microsoft AR/VR Job | Senior Product Designer 2025年5月16日
  • ★ Apple AR/VR Job | AirPlay Audio Engineer 2025年3月27日
  • ★ Apple AR/VR Job | iOS Perception Engineer 2025年3月27日
  • 首页
  • 资讯
  • 资源下载
  • 行业方案
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群

联系微信:ovalics

版权所有:广州映维网络有限公司 © 2025

备案许可:粤ICP备17113731号-2

备案粤公网安备:44011302004835号

友情链接: AR/VR行业导航

读者QQ群:251118691

Quest QQ群:526200310

开发者QQ群:688769630

Paper