Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation

Note: We don't have the ability to review paper

PubDate: Mar 2018

Teams: University of California;Embodied Intelligence;OpenAI;International Computer Science Institute

Writers: Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg, Pieter Abbeel

PDF: Deep Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation

Abstract

Imitation learning is a powerful paradigm for robot skill acquisition. However, obtaining demonstrations suitable for learning a policy that maps from raw pixels to actions can be challenging. In this paper we describe how consumer-grade Virtual Reality headsets and hand tracking hardware can be used to naturally teleoperate robots to perform complex tasks. We also describe how imitation learning can learn deep neural network policies (mapping from pixels to actions) that can acquire the demonstrated skills. Our experiments showcase the effectiveness of our approach for learning visuomotor skills.

You may also like...

Paper