View Invariant 3D Human Pose Estimation
Title: View Invariant 3D Human Pose Estimation
Teams: Microsoft
Writers: Guoqiang Wei Cuiling Lan Wenjun Zeng Zhibo Chen
Publication date: July 2019
Abstract
The recent success of neural networks has significantly advanced the performance of 3D human pose estimation from 2D input images. The diversity of capturing viewpoints and the flexibility of the human poses, however, remain some significant challenges. In this paper, we propose a view invariant 3D human pose estimation module to alleviate the effects of viewpoint diversity. The proposed framework consists of a base network, which provides an initial estimation of a 3D pose, a view-invariant hierarchical correction network (VI-HC) on top of that to learn the 3D pose refinement under consistent views, and a view-invariant discriminative network (VID) to enforce high-level constraints over body configurations. In VI-HC, the initial 3D pose inputs are automatically transformed to consistent views for further refinements at the global body and local body parts level, respectively. For the VID, under consistent viewpoints, we use adversarial learning to differentiate between estimated 3D poses and real 3D poses to avoid implausible results. Experimental results demonstrate that the constraint on viewpoint consistence can dramatically enhance the performance of 3D human pose estimation. Our module shows robustness for different 3D pose base networks and achieves a significant improvement (about 9%) over a powerful baseline on the public 3D pose estimation benchmark Human3.6M.