Pseudo-Haptic Display of Mass and Mass Distribution During Object Rotation in Virtual Reality
PubDate: Feb 2020
Teams: Virginia Tech
Writers: Run Yu ; Doug A. Bowman
PDF: Pseudo-Haptic Display of Mass and Mass Distribution During Object Rotation in Virtual Reality
Abstract
We propose and evaluate novel pseudo-haptic techniques to display mass and mass distribution for proxy-based object manipulation in virtual reality. These techniques are specifically designed to generate haptic effects during the object’s rotation. They rely on manipulating the mapping between visual cues of motion and kinesthetic cues of force to generate a sense of heaviness, which alters the perception of the object’s mass-related properties without changing the physical proxy. First we present a technique to display an object’s mass by scaling its rotational motion relative to its mass. A psycho-physical experiment demonstrates that this technique effectively generates correct perceptions of relative mass between two virtual objects. We then present two pseudo-haptic techniques designed to display an object’s mass distribution. One of them relies on manipulating the pivot point of rotation, while the other adjusts rotational motion based on the real-time dynamics of the moving object. An empirical study shows that both techniques can influence perception of mass distribution, with the second technique being significantly more effective.