QFR: A QoE-driven Fine-grained Routing Scheme for Virtual Reality Video Streaming over SDN

Note: We don't have the ability to review paper

PubDate: May 2020

Teams: Beijing University of Posts and Telecommunications

Writers: Xiaoyu Liu; Yumei Wang; Yu Liu

PDF: QFR: A QoE-driven Fine-grained Routing Scheme for Virtual Reality Video Streaming over SDN

Abstract

In order to meet the Quality of Experience (QoE) requirements of Virtual Reality (VR) video users under limited resources, efficient and adaptive routing scheme is required. The next generation mobile networks 5G can match network and computing resources according to service requirements, which will be the communication technology for the VR industry. In 5G architecture, the introduction of Software Defined Networking (SDN) decouples the control plane and the forwarding plane, and provides the ability of more granular network resource management. It can actively allocate resources for VR video to optimize transmission performance. In this paper, a QoE-driven Fine-grained routing (QFR) scheme based on SDN has been proposed. The core of QFR is the route calculation algorithm and the route allocation strategy. The route calculation algorithm is a two-stage adaptive routing algorithm. In the first stage, by means of an improved Dijkstra algorithm, the algorithm calculates k paths with the shortest delay. In the second stage, the k paths with the shortest delay are ranked according to the predicted QoE of each path. In addition, tile-based VR video provides a prerequisite for fine-grained routing scheduling. Through differentiated routing of Field of View (FoV) video streaming and Non-FoV video streaming, we develope a fine-grained route allocation strategy. The route allocation strategy determines how to allocate the sorted k paths with the shortest delay according to the residual bandwidth. Comparative evaluation of QFR is conducted to show its preponderance over several existing routing schemes, in terms of download bitrate and QoE of VR video.

You may also like...

Paper