空 挡 广 告 位 | 空 挡 广 告 位

Misconfiguration in O-RAN: Analysis of the impact of AI/ML

Note: We don't have the ability to review paper

PubDate: March 2024

Teams: Queen’s University Belfast

Writers: Noe Yungaicela-Naula, Vishal Sharma, Sandra Scott-Hayward

PDF: Misconfiguration in O-RAN: Analysis of the impact of AI/ML

Abstract

User demand on network communication infrastructure has never been greater with applications such as extended reality, holographic telepresence, and wireless brain-computer interfaces challenging current networking capabilities. Open RAN (O-RAN) is critical to supporting new and anticipated uses of 6G and beyond. It promotes openness and standardisation, increased flexibility through the disaggregation of Radio Access Network (RAN) components, supports programmability, flexibility, and scalability with technologies such as Software-Defined Networking (SDN), Network Function Virtualization (NFV), and cloud, and brings automation through the RAN Intelligent Controller (RIC). Furthermore, the use of xApps, rApps, and Artificial Intelligence/Machine Learning (AI/ML) within the RIC enables efficient management of complex RAN operations. However, due to the open nature of O-RAN and its support for heterogeneous systems, the possibility of misconfiguration problems becomes critical. In this paper, we present a thorough analysis of the potential misconfiguration issues in O-RAN with respect to integration and operation, the use of SDN and NFV, and, specifically, the use of AI/ML. The opportunity for AI/ML to be used to identify these misconfigurations is investigated. A case study is presented to illustrate the direct impact on the end user of conflicting policies amongst xApps along with a potential AI/ML-based solution to this problem. This research presents a first analysis of the impact of AI/ML on misconfiguration challenges in O-RAN.

您可能还喜欢...

Paper