跳至内容
  • 首页
  • 行业资讯
  • 资源下载
  • 行业方案
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群
  • All
  • XR
  • CV
  • CG
  • HCI
  • Video
  • Optics
  • Perception
  • Reconstruction

Emo3D: Metric and Benchmarking Dataset for 3D Facial Expression Generation from Emotion Description

编辑:广东客   |   分类:CV   |   2025年2月27日

Note: We don't have the ability to review paper

PubDate: Sep 2024

Teams:Sharif University of Technology,Qatar Computing Research Institute

Writers:Mahshid Dehghani, Amirahmad Shafiee, Ali Shafiei, Neda Fallah, Farahmand Alizadeh, Mohammad Mehdi Gholinejad, Hamid Behroozi, Jafar Habibi, Ehsaneddin Asgari

PDF:Emo3D: Metric and Benchmarking Dataset for 3D Facial Expression Generation from Emotion Description

Abstract

Existing 3D facial emotion modeling have been constrained by limited emotion classes and insufficient datasets. This paper introduces "Emo3D", an extensive "Text-Image-Expression dataset" spanning a wide spectrum of human emotions, each paired with images and 3D blendshapes. Leveraging Large Language Models (LLMs), we generate a diverse array of textual descriptions, facilitating the capture of a broad spectrum of emotional expressions. Using this unique dataset, we conduct a comprehensive evaluation of language-based models' fine-tuning and vision-language models like Contranstive Language Image Pretraining (CLIP) for 3D facial expression synthesis. We also introduce a new evaluation metric for this task to more directly measure the conveyed emotion. Our new evaluation metric, Emo3D, demonstrates its superiority over Mean Squared Error (MSE) metrics in assessing visual-text alignment and semantic richness in 3D facial expressions associated with human emotions. "Emo3D" has great applications in animation design, virtual reality, and emotional human-computer interaction.

本文链接:https://paper.nweon.com/16222

您可能还喜欢...

  • 8481d722d31f26ffd9801a06f6679b0d-thumb-medium

    SimPose: Effectively Learning DensePose and Surface Normal of People from Simulated Data

    2020年08月25日 映维

  • c4cbabb26ac8913ff1d94d9db8932d8b-thumb-medium

    Automatic Gaze Analysis: A Survey of DeepLearning based Approaches

    2021年08月24日 映维

  • 9df37103ef7821e2c220099bc59691e8-thumb-medium

    Real-time 3D Face-Eye Performance Capture of a Person Wearing VR Headset

    2020年08月05日 映维

关注:

最新AR/VR行业分享

  • ★ 暂无数据(等待更新) 2026年1月19日

最新AR/VR专利

  • ★ 暂无数据(等待更新) 2026年1月19日

最新AR/VR行业招聘

  • ★ 暂无数据(等待更新) 2026年1月19日
  • 首页
  • 行业资讯
  • 资源下载
  • 行业方案
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群

联系微信:ovalics

版权所有:广州映维网络有限公司 © 2026

备案许可:粤ICP备17113731号-2

备案粤公网安备:44011302004835号

友情链接: AR/VR行业导航

读者QQ群:251118691

Quest QQ群:526200310

开发者QQ群:688769630

Paper