跳至内容
  • 首页
  • 资讯
  • 资源下载
  • 行业方案
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群
  • All
  • XR
  • CV
  • CG
  • HCI
  • Video
  • Optics
  • Perception
  • Reconstruction

EmojiHeroVR: A Study on Facial Expression Recognition under Partial Occlusion from Head-Mounted Displays

编辑:广东客   |   分类:CV   |   2025年2月27日

Note: We don't have the ability to review paper

PubDate: Feb 2025

Teams:University of the West of Scotland;Hamburg University of Applied Sciences

Writers:Thorben Ortmann, Qi Wang, Larissa Putzar

PDF:EmojiHeroVR: A Study on Facial Expression Recognition under Partial Occlusion from Head-Mounted Displays

Abstract

Emotion recognition promotes the evaluation and enhancement of Virtual Reality (VR) experiences by providing emotional feedback and enabling advanced personalization. However, facial expressions are rarely used to recognize users' emotions, as Head-Mounted Displays (HMDs) occlude the upper half of the face. To address this issue, we conducted a study with 37 participants who played our novel affective VR game EmojiHeroVR. The collected database, EmoHeVRDB (EmojiHeroVR Database), includes 3,556 labeled facial images of 1,778 reenacted emotions. For each labeled image, we also provide 29 additional frames recorded directly before and after the labeled image to facilitate dynamic Facial Expression Recognition (FER). Additionally, EmoHeVRDB includes data on the activations of 63 facial expressions captured via the Meta Quest Pro VR headset for each frame. Leveraging our database, we conducted a baseline evaluation on the static FER classification task with six basic emotions and neutral using the EfficientNet-B0 architecture. The best model achieved an accuracy of 69.84% on the test set, indicating that FER under HMD occlusion is feasible but significantly more challenging than conventional FER.

本文链接:https://paper.nweon.com/16224

您可能还喜欢...

  • 1bddf9883efacb0386ca6d1b8631801f-thumb-medium

    A Low-Profile Digital Eye-Tracking Oculometer for Smart Eyeglasses

    2020年10月28日 映维

  • 6df2deb558879c3cfd8234f9dd4bf50c-thumb-medium

    FroDO: From Detections to 3D Objects

    2020年06月13日 映维

  • Large-scale Localization Datasets in Crowded Indoor Spaces

    2021年06月28日 映维

关注:

最新AR/VR行业分享

  • ★ 暂无数据(等待更新) 2025年12月17日

最新AR/VR专利

  • ★ 暂无数据(等待更新) 2025年12月17日

最新AR/VR行业招聘

  • ★ 暂无数据(等待更新) 2025年12月17日
  • 首页
  • 资讯
  • 资源下载
  • 行业方案
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群

联系微信:ovalics

版权所有:广州映维网络有限公司 © 2025

备案许可:粤ICP备17113731号-2

备案粤公网安备:44011302004835号

友情链接: AR/VR行业导航

读者QQ群:251118691

Quest QQ群:526200310

开发者QQ群:688769630

Paper