Interacting with Acoustic Simulation and Fabrication
PubDate: Dec 2017
Teams: Columbia University
Writers: Dingzeyu Li
PDF: Interacting with Acoustic Simulation and Fabrication
Abstract
Incorporating accurate physics-based simulation into interactive design tools is challenging. However, adding the physics accurately becomes crucial to several emerging technologies. For example, in virtual/augmented reality (VR/AR) videos, the faithful reproduction of surrounding audios is required to bring the immersion to the next level. Similarly, as personal fabrication is made possible with accessible 3D printers, more intuitive tools that respect the physical constraints can help artists to prototype designs. One main hurdle is the sheer amount of computation complexity to accurately reproduce the real-world phenomena through physics-based simulation. In my thesis research, I develop interactive tools that implement efficient physics-based simulation algorithms for automatic optimization and intuitive user interaction.