跳至内容
  • 首页
  • 资讯
  • 资源下载
  • 行业方案
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群
  • All
  • XR
  • CV
  • CG
  • HCI
  • Video
  • Optics
  • Perception
  • Reconstruction

Latency Reduction in CloudVR: Cloud Prediction, Edge Correction

小编 广东客   |   分类:XR   |   2025年2月27日

Note: We don't have the ability to review paper

PubDate: Sep 2024

Teams:Sharif University of Technology

Writers:Ali Majlesi Kopaee, Seyed Amir Hajseyedtaghia, Hossein Chitsaz

PDF:Latency Reduction in CloudVR: Cloud Prediction, Edge Correction

Abstract

Current virtual reality (VR) headsets encounter a trade-off between high processing power and affordability. Consequently, offloading 3D rendering to remote servers helps reduce costs, battery usage, and headset weight. Maintaining network latency below 20ms is crucial to achieving this goal. Predicting future movement and prerendering are beneficial in meeting this tight latency bound. This paper proposes a method that utilizes the low-latency property of edge servers and the high resources available in cloud servers simultaneously to achieve cost-efficient, high-quality VR. In this method, head movement is predicted on the cloud server, and frames are rendered there and transmitted to the edge server. If the prediction error surpasses a threshold, the frame is re-rendered on the edge server. Results demonstrate that using this method, each edge server can efficiently serve up to 23 users concurrently, compared to a maximum of 5 users when rendering the frame entirely on the edge server. Furthermore, this paper shows that employing the Mean Absolute Error loss function and predicting acceleration rather than velocity significantly enhances prediction accuracy. Additionally, it is shown that normalizing individual data using its mean and standard deviation does not yield improvements in prediction accuracy. These findings provide insights into optimizing VR headset performance through cloud-edge collaboration.

本文链接:https://paper.nweon.com/16221

您可能还喜欢...

  • Adaptive Streaming Perception using Deep Reinforcement Learning

    2021年07月13日 映维

  • A feasibility study on SSVEP-based interaction with motivating and immersive virtual and augmented reality

    2020年07月23日 映维

  • VRtefacts: Performative Substitutional Reality with Museum Objects

    2020年07月16日 映维

关注:

RSS 最新AR/VR行业分享

  • 浙江省科技馆亮相天文科普VR大空间,用PICO头显还原比邻星系统 2025年7月5日
  • 2025年07月05日美国专利局新申请AR/VR专利摘选 2025年7月5日
  • XR日报:Meta AR智能眼镜或叫Meta Celeste,Steam市占Quest 3 暴跌6.38% 2025年7月4日
  • 索尼专利提出基于眼动追踪的智能阅读控制模式 2025年7月4日
  • 索尼专利提出多模态手指追踪技术扩展游戏控制器功能 2025年7月4日

RSS 最新AR/VR专利

  • Samsung Patent | Display device for providing content, and display device operation method 2025年7月3日
  • IBM Patent | Adaptive synchronization of objects in a distributed metaverse 2025年7月3日
  • Samsung Patent | Wearable device grouping and providing a plurality of application execution screens and method for controlling the same 2025年7月3日
  • Google Patent | Modifying notes within virtual scene 2025年7月3日
  • Sony Patent | Information processing apparatus, information processing method, and program 2025年7月3日

RSS 最新AR/VR行业招聘

  • Microsoft AR/VR Job | High Performance Compute, Director 2025年6月5日
  • Microsoft AR/VR Job | Data Center Technician/ Technicien de Centre de Données 2025年6月3日
  • Microsoft AR/VR Job | Senior Product Designer 2025年5月16日
  • Apple AR/VR Job | AirPlay Audio Engineer 2025年3月27日
  • Apple AR/VR Job | iOS Perception Engineer 2025年3月27日
  • 首页
  • 资讯
  • 资源下载
  • 行业方案
  • Job招聘
  • Paper论文
  • Patent专利
  • 映维会员
  • 导航收录
  • 合作
  • 关于
  • 微信群

联系微信:ovalics

版权所有:广州映维网络有限公司 © 2025

备案许可:粤ICP备17113731号-2

粤公网安备 44011302004835号

友情链接: AR/VR行业导航

读者QQ群:251118691

Quest QQ群:526200310

开发者QQ群:688769630

Paper